30 research outputs found

    Mars Surface Operations via Low-Latency Telerobotics from Phobos

    Get PDF
    To help assess the feasibility and timing of Low-Latency Telerobotics (LLT) operations on Mars via a Phobos telecommand base, operations concepts (ops cons) and timelines for several representative sequences for Mars surface operations have been developed. A summary of these LLT sequences and timelines will be presented, along with associated assumptions, operational considerations, and challenges

    The Role of Cis-Lunar Space in Future Global Space Exploration

    Get PDF
    Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this paper, motivated in part by recent interest expressed at the Global Exploration Roadmap Stakeholder meeting. This paper will also explore the links between this HAT Cis-Lunar Destination Team analysis and the recently released ISECG Global Exploration Roadmap and other potential international considerations, such as preventing harmful interference to radio astronomy observations in the shielded zone of the moon

    Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    Get PDF
    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015 Workshop session

    Is the Universe Enough? Can It Suffice as a Basis for Worldviews?

    Get PDF
    The modern scientific cosmic perspective is unique and compelling, but it is not for everyone. Modern cosmology can be humbling and awe-inspiring, even motivating It can also be overwhelming, even scary. The extent to which the universe we know today can form the basis of satisfactory worldviews rests largely on human psychology, preferences, and needs, as well as on what we mean by “worldview”. This essay will explore some ways to think about worldviews and the universe, with an emphasis on exploring relationships between cosmic evolution and cultural evolution (Dick and Lupisella), including what might be called “cosmocultural evolution” – the coevolution of cosmos and culture (Lupisella 2009). We will touch on a few cosmocultural evolutionary perspectives as well as broader underlying “cosmological theories of value”. With an eye toward psychology, we will consider if and how such perspectives might inform, or possibly suffice as worldviews, suggesting generally that the universe may suffice for some people some of the time, but probably not for most people most of the time

    The mission events graphic generator software: A small tool with big results

    Get PDF
    Utilization of graphics has long been a useful methodology for many aspects of spacecraft operations. A personal computer based software tool that implements straight-forward graphics and greatly enhances spacecraft operations is presented. This unique software tool is the Mission Events Graphic Generator (MEGG) software which is used in support of the Hubble Space Telescope (HST) Project. MEGG reads the HST mission schedule and generates a graphical timeline

    Human Mars Surface Science Operations

    Get PDF
    Human missions to the surface of Mars will have challenging science operations. This paper will explore some of those challenges, based on science operations considerations as part of more general operational concepts being developed by NASA's Human Spaceflight Architecture (HAT) Mars Destination Operations Team (DOT). The HAT Mars DOT has been developing comprehensive surface operations concepts with an initial emphasis on a multi-phased mission that includes a 500-day surface stay. This paper will address crew science activities, operational details and potential architectural and system implications in the areas of (a) traverse planning and execution, (b) sample acquisition and sample handling, (c) in-situ science analysis, and (d) planetary protection. Three cross-cutting themes will also be explored in this paper: (a) contamination control, (b) low-latency telerobotic science, and (c) crew autonomy. The present traverses under consideration are based on the report, Planning for the Scientific Exploration of Mars by Humans1, by the Mars Exploration Planning and Analysis Group (MEPAG) Human Exploration of Mars-Science Analysis Group (HEM-SAG). The traverses are ambitious and the role of science in those traverses is a key component that will be discussed in this paper. The process of obtaining, handling, and analyzing samples will be an important part of ensuring acceptable science return. Meeting planetary protection protocols will be a key challenge and this paper will explore operational strategies and system designs to meet the challenges of planetary protection, particularly with respect to the exploration of "special regions." A significant challenge for Mars surface science operations with crew is preserving science sample integrity in what will likely be an uncertain environment. Crewed mission surface assets -- such as habitats, spacesuits, and pressurized rovers -- could be a significant source of contamination due to venting, out-gassing and cleanliness levels associated with crew presence. Low-latency telerobotic science operations has the potential to address a number of contamination control and planetary protection issues and will be explored in this paper. Crew autonomy is another key cross-cutting challenge regarding Mars surface science operations, because the communications delay between earth and Mars could as high as 20 minutes one way, likely requiring the crew to perform many science tasks without direct timely intervention from ground support on earth. Striking the operational balance between crew autonomy and earth support will be a key challenge that this paper will address

    A Theoretical Microbial Contamination Model for a Human Mars Mission

    Get PDF
    Contamination from a human presence on Mars could significantly compromise the search for extraterrestrial life. In particular, the difficulties in controlling microbial contamination, the potential for terrestrial microbes to grow, evolve, compete, and modify the Martian environment, and the likely microbial nature of putative Martian life, make microbial contamination worthy of focus as we begin to plan for a human mission to Mars. This dissertation describes a relatively simple theoretical model that can be used to explore how microbial contamination from a human Mars mission might survive and grow in the Martian soil environment surrounding a habitat. A user interface has been developed to allow a general practitioner to choose values and functions for almost all parameters ranging from the number of astronauts to the half-saturation constants for microbial growth. Systematic deviations from a baseline set of parameter values are explored as potential plausible scenarios for the first human Mars missions. The total viable population and population density are the primary state variables of interest, but other variables such as the total number of births and total dead and viable microbes are also tracked. The general approach was to find the most plausible parameter value combinations that produced a population density of 1 microbe/cm3 or greater, a threshold that was used to categorize the more noteworthy populations for subsequent analysis. Preliminary assessments indicate that terrestrial microbial contamination resulting from leakage from a limited human mission (perhaps lasting up to 5 months) will not likely become a problematic population in the near-term as long as reasonable contamination control measures are implemented (for example, a habitat leak rate no greater than 1 % per hour). However, there appear to be plausible, albeit unlikely, scenarios that could cause problematic populations, depending in part on (a) the initial survival fraction and death rate of microbes that are leaked into the Martian environment, which depends largely on the possibility for protection from the high UV radiation environment on Mars, (b) organic nutrient availability, and (c) liquid water availability, which is likely to be the limiting survival and growth factor

    Low-Latency Teleoperations: Operational Implications for Human Space Exploration

    Get PDF
    Low-latency teleoperations (LLT) is envisioned to be an element of human exploration missions in a number of different applications. LLT can be broadly considered to encompass any remote operation of an asset with a communication delay that is less than the human response time to allow for what is effectively "real-time" or "near real-time" operations. This paper will explore motivations and operational implications for why and how LLT might be used for human exploration space missions. LLT analyses have been performed under the auspices of the NASA Human Spaceflight Architecture Team (HAT) and Evolvable Mars Campaign (EMC). The EMC created a flexible, evolvable, capability-driven architectural strategy to enable a sustainable long-term human presence at Mars. LLT is envisioned to be part of that strategy for both in-space and on-surface applications, and this paper will expand on operational considerations within that broader strategic context, as well additional contexts. Some operational implications explored in this paper, derived largely from previous work, are: (1) crew mission support, for which we will address roles for Mission Control on earth, balanced with the capability for crew and robotic assets to operate independently, (2) science operations, with a focus on "backroom" support, highly dynamic science, and enhanced science return and efficiency, and (3) operational efficiency at a deep-space destination such as Mars, including implications for communications infrastructures and how to leverage and balance system autonomy with crew operations, both of which can inform the overall operational "choreography" between crew members, multiple shifts, and exploration assets

    In Situ Biological Contamination Studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions

    Get PDF
    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars

    Contamination Mitigation Strategies for Long Duration Human Spaceflight Missions

    Get PDF
    Contamination control issues are particularly challenging for long-term human spaceflight and are associated with the search for life, dynamic environmental conditions, human-robotic-environment interaction, sample collection and return, biological processes, waste management, long-term environmental disturbance, etc. These issues impact mission success, human health, planetary protection, and research and discovery. Mitigation and control techniques and strategies may include and integrate long-term environmental monitoring and reporting, contamination control and planetary protection protocols, habitation site design, habitat design, and surface exploration and traverse pathways and area access planning
    corecore